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In  this paper we derive one-space-dimensional, reduced systems of equations (one- 
dimensional closure models) for viscoelastic free jets. We begin with the three- 
dimensional system of conservation laws and a MaxwellJeffreys constitutive law for 
an incompressible viscoelastic fluid. First, we exhibit exact truncations to a finite, 
closed system of one-dimensional equations based on classical velocity assumptions 
of von Karman (1921). Next, we demonstrate that the three-dimensional free-surface 
boundary conditions overconstrain these truncated systems, so that  only a very 
limited class of solutions exist. We then proceed to derive approximate one- 
dimensional closure theories through a slender- jet asymptotic scaling, combined with 
appropriate definitions of velocity, pressure and stress unknowns. Our non- 
axisymmetric one-dimensional slender- jet models incorporate the physical effects of 
inertia, viscoelasticity (viscosity, relaxation and retardation), gravity, surface 
tension, and properties of the ambient fluid, and include shear stresses and time 
dependence. Previous special one-dimensional slender- jet models correspond to the 
lowest-order equations in the present asymptotic theory by an a posteriori 
suppression to leading order of some of these effects, and a reduction to axisymmetry. 
We thereby : (i) derive existing one-dimensional models from the three-dimensional 
free surface boundary-value problem ; (ii) clarify the sense of the one-dimensional 
approximation ; (iii) deduce new one-dimensional closure models for non-axi- 
symmetric viscoelastic free jets. 

1. Introduction and history 
There are at least two motivations for one-space-dimensional models of free, three- 

dimensional fluid jets. For engineering applications such as ink-jet printing, polymer 
extrusion and fibre spinning, there is a need to reproduce and predict experimental 
jet phenomena with a simple and tractable system of equations. This has been a 
dominant theme in the history of the subject. Secondly, in light of the measured 
success of one-dimensional models in certain specific jet applications, i t  is natural to 
ask why the lower-dimensional models are able to  model three-dimensional 
phenomena. Can these one-dimensional models be derived in some approximate 
sense from the full three-dimensional free boundary-value problem (b.v.p.) ? 
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Our primary purpose in this paper is to answer this question. We will: (i) derive 
one-dimensional models for free jets from the three-dimensional free surface b.v.p. ; 
and (ii) clarify the sense in which the one-dimensional models approximate and are 
consistent with the full three-dimensional b.v.p. The analytic framework is based on 
averaging over two-dimensional jet cross-sections and an asymptotic scaling in a 
slenderness ratio. In  answering this question, we find that existing one-dimensional 
models correspond to particular specifications of fluid and flow properties within one 
comprehensive theory. 

The one-dimensional jet models are a truncation of the full three-dimensional 
system (which has infinite modes in three space and one time dimensions) to a finite 
number of unknown (modes) in one space (axial coordinate) and one time dimen- 
sions. 

Analogous truncations occur in all numerical simulations of three-dimensional 
fluids. For example, in spectral methods one chooses to truncate a t  some finite term 
in the Fourier mode expansion. In  specific applications, often one exploits special 
properties and/or symmetries of the full three-dimensional b.v.p. to truncate modes 
and/or spatial dimensions. Two examples are the exact truncation to vortex-sheet 
and vortex-layer equations for three-dimensions Euler flows, and the von Karman 
(1921) velocity profile assumption for three-dimensional Newtonian flow between 
rotating concentric cylinders. 

When the truncation scheme is not an exact reduction of the full system, an art 
arises as to the best way to ‘close the system’ and produce the same number of 
equations as unknowns (a closure model). Rarely can or does one qualify the sense 
in which a truncated, non-exact closure model approximates the full system. The 
proof is usually by comparison with experiments. A novelty of the present 
application to  three-dimensional jet flows is that we deduce asymptotically valid, 
one-dimensional closure models from the full three-dimensional b.v.p. The asymp- 
totics is based on a slender-jet geometry. 

We reiterate that the focus of this paper is the derivation of consistent one- 
dimensional closure models for free viscoelastic jets from the full three-dimensional 
b.v.p. The solutions and consequences of these models in applications to free-jet 
phenomena are given in Bechtel, Forest & Lin (1987, 1988a), Bechtel, Forest & 
Hyman (1988) and Bechtel, Bogy & Forest (1986). A variety of future applications 
are planned. 

Throughout this paper we refer to the unknowns as modal variables, by analogy 
with amplitude variables in Fourier mode expansions. We then refer to the reduced 
equations that govern these unknowns as modal equations. 

The remainder of this paper is organized as follows. In $2 we exhibit exact 
truncations, for inviscid, Newtonian, and non-Newtonian unbounded flows, to a 
finite, closed system of one-dimensional modal equations. These results follow from 
a ‘separation of variables ’ structure of the Navier-Stokes equations which von 
KarmBn (1921) applied to study axisymmetric flow between rotating concentric 
cylinders. More recently, Phan-Thien (1983) ext,ended this structure to axisymmetric 
flows of an upper convected Maxwell fluid. Here we note the extension of this exact 
finite mode truncation to elliptical symmetry and a more general (Maxwell-Jeffreys) 
constitutive model. (These exact truncations will arise later as the ‘zeroth-order ’ 
basis of our perturbation theory for bounded, free-surface flows.) 

In Q 3, we investigate the constraints imposed on the exact one-dimensional closure 
models of $ 2  when a free surface is introduced. We demonstrate that the three- 
dimensional interfacial boundary conditions overconstrain the previously closed 
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system of equations, so that only trivial solutions exist. We then proceed to show 
that an approximate one-dimensional closure theory can be salvaged in an 
appropriate scaling limit. I n  essence, we exploit the exact one-dimensional closure 
models of $2 in a perturbation expansion, with a slenderness ratio as the perturbation 
parameter. 

There is a long history (Matovich & Pearson 1969; Kase 1974; Denn, Petrie & 
Avenas 1975; Fisher & Denn 1976; Denn & Marrucci 1977; Schultz & Davis 1982; 
Denn 1983; Joseph, Matta & Nguyen 1983; Tanner 1985; Phan-Thien & Caswell 
1986 ; Gupta, Puszynski & Sridhar 1986) of approximate one-dimensional models for 
free Newtonian and viscoelastic jets, often referred to as the ‘thin filament’ or 
‘ slenderness ’ approximation, or ‘nearly elongational ’ flows. The original formulation 
is due to  Matovich & Pearson (1969) in the study of fibre spinning. Many authors 
have since adopted their perturbation scheme, which is purely formal since the 
perturbation parameter is not identified in terms of any specific dimensionless flow 
or fluid parameter. This heuristic aspect of the theory clouds applications of the 
scheme since there is no physical scaling hypothesis. In  general, the range of 
assumptions and validity of individual one-dimensional jet models is unknown. The 
need for an analysis which catalogues the full range of assumptions, and indicates 
when the one-dimensional approximation breaks down, is expressed in Petrie ( 1979), 
Denn (1983) and Tanner (1985). Also the existing models are presented and applied 
under a variety of a priori restrictions (e.g. in the absence of one or more of time 
dependence, shear stresses, gravity, inertial effects and surface tension), as dictated 
by the particular applications. All existing models are axisymmetric. 

(A second group of one-dimensional jet models are based on posited self-consistent 
one-dimensional models (cf. Naghdi 1979, 1981 ; Green, Naghdi & Wenner 19746; 
Antmann 1972; Bechtel et al. 1986). The connections between the posited one- 
dimensional models and derivations from the three-dimensional free-surface 
boundary-value problem are discussed in Bechtel et al. 1987). 

In  9 9 4 4  we derive an asymptotically valid, one-dimensional theory of slender-jet 
closure models. The theory is comprehensive, in that we begin with the full three- 
dimensional free-surface boundary-value problem, with the following physical effects 
incorporated : time dependence, shear stresses, inertial effects, viscoelasticity 
(viscosity, relaxation and retardation effects), gravity, surface tension and properties 
of the ambient fluid as they appear in the free-surface interfacial conditions. In this 
way we develop the general context under which every one-dimensional jet closure 
model (with these physical effects, constitutive law and choice of modal variables) is 
deduced. 

As is shown in $ 7 ,  existing one-dimensional jet theories correspond in this general 
framework to the lowest-order equations in the asymptotic expansion, with a 
posteriori suppression to leading order of many of the physical effects. We thereby 
derive previous one-dimensional models from the three-dimensional free-surface 
boundary-value problem and clarify the sense of the one-dimensional closure model 
approximation. 

In  addition, we have deduced new, asymptotically valid, one-dimensional closure 
models for viscoelastic free jets. One particular new feature is the extension to 
elliptical free-surface symmetry (this generalization was suggested by the posited 
one-dimensional models of Caulk & Naghdi (1979 a ,  13) for inviscid and Newtonian 
elliptical jets). Moreover, higher-order corrections are available from this analytic 
framework, both from within a specific model and due to physical effects that are 
suppressed in the lowest-order equations. 
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We begin with the equations of motion for an arbitrary, incompressible three- 

p f $ + ( u - V ) u )  =pg+divT,  ( l . la)  

dimensional continuum : 

1 

T = -PI+ T = T‘, (1.16) 

div v = 0. ( l . l c )  

Here v is the velocity, f is the determinate part of the stress tensor T,  p is the 
constraint pressure, p is the mass density (assumed constant), and pg is the 
gravitational body force. Equations (1.la) and ( l . l b )  are balance laws for linear 
momentum and angular momentum, and (1 .1  c )  is the incompressibility constraint. 

For a three-dimensional continuum, a constitutive law must be adjoined to 
determine the unknown stress f .  In  this paper we consider viscoelastic fluids and 
adopt a Maxwell-Jeffreys constitutive model : 

(1.2a) 

where D and the ‘rate’ D/Dt are given below. The operator DID1 must be suitably 
invariant ; we choose a one-parameter family with rate parameter a ,  

(1.26) 

For the special values a = 1, - 1,0, the rate (1.2 b )  is commonly referred to as upper 
convected, lower convected and corotational, respectively. Here, the tensors D and 
W are the symmetric and skew parts of the velocity gradient, 

D = i(Vu+VuT), (1 .2c)  

w = ; (Vu-vvT),  ( 1 . 2 4  

with ( V U ) , ~  = v , , ~  = (a/ax,) (v,) in Cartesian coordinates. The constants 7, A, and A, are, 
respectively, the zero strain rate viscosity, relaxation time, and retardation time of 
the Maxwell-Jeffreys fluid. For A, = A, = 0, ( 1 . 2 ~ ~ )  reduces to the Newtonian 
constitutive law where f is prescribed by gradients of the velocity field. Also, the 
Maxwell-Jeffreys model with upper convected rate is commonly called the Oldroyd 
fluid B. With these preliminaries, we return now to the central theme of this paper. 

2. Exact closure models 
The assumed velocity profile that reveals a separation of variables and the choice 

of velocity modal variables in this theory begins with a generalization of the von 
Karman velocity ansatz (1921) : 

tJ = [41(z, t )  - y%% t) l  el + [yY2(z, t )  + x w ,  t)l e2 + v(z, 4 e3. (2.1) 

This is the most general linear polynomial in x and y which has reflection symmetry 
with respect to the (2 ,~) -  and (y, z)-planest ; the original von Karman ansatz assumes 

t The truncated expansion (2.1) is presented for the purpose of exhibiting exact reductions of 
the three-dimensional problem. For the asymptotic scaling of $6, the velocity is assumed only to 
be expressible as a series in transverse coordinates x,y,  which agrees with (2.1) t o  linear terms in 
the expansion. 
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axisymmetry, i.e. symmetry about all planes containing the z-axis, so that C1 3 5,. 
Here x ,  y ,  z denote the usual Cartesian coordinates, ei ( j  = 1,2 ,3)  denote the 
corresponding base vectors and e3 represents the axial direction. Consistent with the 
assumption (2.1), we take the gravitational body force pg to be along e3. 

Now, we evaluate momentum balance and incompressibility equations (1  . l )  for the 
velocity ansatz (2.1), which yields: 

X P ( 6 1 , t  + w 5 1 , z +  G -$."I - Y P W ,  t + w $ , 2 +  9% + C 2 ) )  = - P,z+~l l , z+ '12 ,y  + % , 2 >  

( 2 . 2 ~ )  

xd$ , t  +'$, 2 +$(61+52)>+Yp(C'Z, t +'<Z, z+G-$') = -P ,  Y+'I!Z, z+'22, y+'32,2, 

(2.2b) 

p(', t +", 2 )  = - p ,  Zipq+'l3, s f ' 2 3 ,  y + 2 ) 3 3 , Z ,  (2 .24  

C 1 + 5 2 + ~ , 2  = 0. ( 2 . 2 4  

In  this paper subscripts , t ,  , z ,  , x and , y denote partial differentiation with respect 
to time t ,  the axial coordinate z ,  and the transverse coordinates x and y, respectively. 

In order to exhibit exact closure models, we need an ansatz for p and cj compatible 
with equation (2.1), so that equations (2.2) balance as polynomials in x and y. We 
now list two such cases in increasing order of complexity. 

2.1. Newtonian (Nawier-Stokes) flows 
Let A, = 0 = A,, 7 + 0, so that ( 1 . 2 ~ )  yields the Navier-Stokes constitutive 
assumption, P = 27D. (2.3) 

The Newtonian constitutive law (2.3), together with the velocity ansatz (2.1), gives 
the stress components pti explicitly in terms of the functions cl, C2, q+ and w of z and 
t .  Only Pl3 and FZ3 depend on x and y, and this dependence is linear. Equations 
(2.2a-c) imply that 

P = P o k  t )  +iZ2Pl(t) +kY2P,(t). 

(Only p in equations (2.2a, b)  depends implicitly on x and y ,  and the x and y 
dependence of the remaining terms is explicitly linear.) Hence in the Newtonian case, 
the velocity ansatz (2.1) implies that the pressure and stress components are also 
given by truncated power series in x and y ,  and equations (2.2) reduce to  

Equations (2.5) represent five equations for five unknowns, (C,, gz, $, w,po) (2, t ) ,  with 
two arbitrary functions (p1 ,p2)  o f t .  

2.2. Upper convected MaxweElJeffreys, second-order exact truncation ansatz 
This exact closure model is significant in that the stress variables pi, are not 
prescribed by the velocity field. When A, =!= 0 in (1.2), the velocity ansatz (2.1) does 
not imply that the stress and pressure are also truncated power.series in x and y. 



P1&,y, 2, t )  = a , ( z , t ) + a , ( z , t ) x 2 + a 2 ( z ,  t)y2+a3(Z,t)xy+co(z,t)x+c1(z,t) y, 

Gl@, y, 2 ,  t )  = a&, t )  z+b,(z, t )  y, 

G&> y, 2 ,  t )  = a&, t )  y + b,(z, t )  x, 

P21(x,y,z, t )  = b,(z,t)+a,(z, t)~~+a~(~,t)y~+a~(z,t)xy+b~(z,t)x+b~(z,t)y, 

Fz2(x ,  Y, 2 ,  t )  = a&, t )  x2 + a,,(z, t )  y2 + all@, t )  xy + a,&, t )  + b,(z, t )  x+ b,(z, t )  y, 
.. 

Substituting (2.6) into the momentum conservation and incompressibility equations 
(2.2) (which already incorporates (2.1)), yields five modal equations for the modal 
variables, (cl, c2, $, v,  a,, . . . , a13, c,, cl, b,, . . . , b,, p,) ( z ,  t ) ,  and the time-dependent pre- 
ssure variables pl(t), . . . , p 5 ( t ) ,  and three constraint equations involving only the 
stress and pressure unknowns. Then we insert the velocity, pressure and stress ansatz 
(2.1), (2.6) into the upper convected (a  = 1)  Maxwell-Jeffreys constitutive law, and 
obtain 23 additional modal equations. 

Thus, with the modal ansatz (2.1), (2.6), involving four velocity modal variables, 
one primitive pressure variable, five time-dependent pressure variables, and twenty- 
three stress variables, we obtain 28 equations in 28 unknowns (cl, c2, $, u,po,  a,, . . . , 
a133 cO> 7 '6, pa) involving five arbitrary functions of t ,  ( p l ,  . . . , p 5 ) ,  which are 
constrained by three conditions. 

Remark. We do not explicitly present this exact closure model, nor do we consider 
the full class of solutions of these modal equations. The upshot here is simply that 
there exists an exact one-dimensional modal truncation for viscoelastic fluids, which 
fuels one's imagination that more general, approximate one-dimensional models 
exist. 

These exact closure models also illustrate our next main point. That is, when a free 
surface is coupled to the fluid equations, exact closure is lost. As will be seen in the 
following section, the free-surface kinematic and kinetic boundary conditions 
effectively couple higher-order terms in the power series expansions for u, p and f to 
these lowest-order modal equations, yielding the classic closure difficulties. 

' (2.6) 

3. Free-surface boundary conditions : compatibility with closure models 
We are interested in modelling the dynamics of free jets. Here we describe the free 

surface, its modal variables, and the associated boundary conditions. We then 
describe the impact of a free surface on closure models and indicate how the free- 
surface boundary conditions influence the choice of stress modal variables. This point 
is expanded upon in Bechtel & Forest (1988). 
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Rather, in addition to (2.1) we posit a modal ansatz for cj and p that is consistent 
with the velocity ansatz (2.1), and which yields an exact, closed system of one- 
dimensional modal equations, derived from ( l . l ) ,  (1.2). We demonstrate only the 
case a = 1.  This viscoelastic closure model builds on an axisymmetric, Maxwell 
(A,  = 0) model due to Phan-Thien (1983). 

With the velocity ansatz (2.1), we pose the following stress and pressure 
ansatz : 
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Free surface (surface tension, 
X 

I ambient pressure) 

Nozzle 1 1  
Z 

Y 

FIGURE 1 .  Free jet with elliptical cross-section. 

The free surface, with assumed elliptical cross-section, is represented by 

Each cross-section z = xo is an ellipse with semi-axis lengths $2, which deform in 
z and t .  See figure 1. The surface unknowns $l(,z , t) ,  $ z ( z , t )  are additional modal 
variables. To complete the three-dimensional viscoelastic free-surface boundary- 
value problem, we adjoin to (1 .1) ,  (1.2) the interfacial boundary conditions 
(equations (3.2)-(3.6) below) : 

The kinematic boundary conditions. The free surface is convected with the fluid. 
From the velocity ansatz (2.1) and free surface ansatz (3.1), this condition yields: 

( 3 . 2 ~ )  

The second condition is very restrictive: either there is no swirl ($ = 0) ,  or the 
swirling flow must be axisymmetric ($1 = $2 and 5, = 5,). For the remainder of this 
paper, with the exception of this section on exact closure, we restrict to the case of 
no swirl, $ = 0. The alternative of axisymmetric swirl is pursued in Bechtel, Bolinger 
& Forest (1988). This restriction (3 .2b )  could be removed in two ways: (i) by allowing 
the cross-section (3.1) to rotate (see Caulk & Naghdi 1979a in the context of director 
theory; or, (ii) by allowing a higher-order flow geometry than (2.1). These 
generalizations are pursued elsewhere in Bechtel, Forest & Lin (1988b). 

The kinetic boundary conditions. Shear stresses are assumed continuous across the 
fluid/ambient interface, whereas the normal stress is discontinuous. The jump in 
normal stress across the free surface is assumed to be balanced by the constant 
surface tension r times the free surface mean curvature K .  These conditions state: 

t f a  - 2  =--(TKn, (3.3u) 
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where t ,  and t ,  are the boundary stress vectors in the jet and ambient material, 
respectively, and n is the unit outward normal to the interface. We further assume 
the ambient material exerts a constant pressure pa : 

t, = -pan. (3.36) 

(Many physical applications require a more complicated ambient fluid model than 
(3.3b). Joseph et al. (1983), for example, incorporate the dynamics of the ambient 
fluid in order to study entrainment. We are currently extending the analysis to allow 
for the pursuit of these applications.) 

For the elliptical free-surface ansatz (3.1), with the arbitrary stress ( l . l b ) ,  the 
normal n and free-surface mean curvature K are computed, and (3.3) becomes : 

-((TK+pa-p12)$2 COSB = Flll& c0s8-F1,I, 

- ( m + p , - p ~ ~ ) $ ~  sin8 = F221a$l sin8-F2,1, 

x ($,$,,, sin28+$,$,,, C O S ~ O ) + ~ ; ~ ~ I ~ $ ~  sin8, (3.4a) 

x (#,#2,zsin28++2$l,, c o ~ ~ 8 ) + ~ ~ , I , $ ,  cos8, (3.4b) 

sin8-P3, I 2($1 $ 2 , z  sin2 o+$2$l ,z  cos2 o), ( 3 . 4 ~ )  

where the symbol l a  indicates evaluation on the boundary of the elliptical cross- 
section a t  

x = $1 cos8, y = $ 2  sin8, (3.5) 

and the mean curvature K is given by 

(rK+Pa-P I?) ($1 $ 2 , ~  sin2 ~ + $ z $ I , z  COS2 8)  = 913 cos8 

+@23 I a 

~(@,z,t) = -[(& sin28+$; ~ O S ~ L ~ ) ( $ ~ , ~ ~ $ ~  C O S ~ ~ + $ , , , , $ ~  sin2@ 

+ 2($1+2, z- $2 $1, 2) ($1 + L Z  - $2 $ 2 ,  z )  cos2 8 sin2 6 
-$ l$2($f ,z  c o s 2 e + $ ~ , ,  sin28+1)I x [($,$,,, sin2B+$,$,,, ~ 0 ~ ~ 8 ) ~  

+ $: sinV + $; cos28]-%. (3.6) 

Given these free-surface boundary conditions (3.2)-( 3.6), any closure model for 
free jets derived from the three-dimensional theory which is based on the elliptic von 
KarmBn ansatz (2.1) (thus far, all are based on the axisymmetric special case) must 
respect these boundary conditions. This point is not completely checked in some 
models. Posited one-dimensional models for fluid jets (cf. Caulk & Naghdi 1979a, b, 
1987; Green 1975, 1976; Bechtel et al. 1986) choose to demand that the kinematic 
conditions (3.2) be satisfied, but do not require the pointwise kinetic condition (3.4). 
We now investigate these free-surface constraints on the exact closure models of the 
previous section. Then, in $4, we return to the general situation when there is no 
exact power series truncation (those listed here are, to our knowledge, the only 
known exact truncations), and reassess the choice of modal variables. 

3.1. Free Surface Newtonian flows 
With the von Karman velocity profile (2.1), Newtonian constitutive assumption (2.3) 
on f ,  and the resulting truncated power series representation (2.4) on p, the kinetic 
boundary conditions imply (when (T + 0) that  the free jet is axisymmetric, i.e. 

51 = 5, = 6, $1 = $2 = $> Pl = P,. (3.7) 

This constraint eliminates the possibility of employing the exact one-dimensional 
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closure model to investigate non-axisymmetric free jet behaviour. I n  addition, the 
kinetic boundary condition (3 .4  b) demands 

P $ , z k z  = Q. (3 .8)  

Thus, either the free surface is cylindrical, $ = $ , ( t ) ,  independent of z, or there is no 
swirl, ~ = 0. We elect to satisfy (3 .46)  by restricting $ = 0. Then the remaining 
kinetic boundary conditions (3 .4a,  c )  impose the constraints : 

P&, t )  = Pa - B$2P,(t) + (TK + r (25  - $4 , z 5, z 1 2  

$ , z ( $ $ , z  C,z-25) = $5,z -2v.z  $42. 

(3 .9)  

Thus, the primitive pressure variable p,(z, t )  is prescribed and the second condition 
is a non-trivial constraint on $, 5 and v. 

Summarizing, we have three modal equations (2 .5a ,  d ,  e ) ,  p ,  is prescribed by 
( 3 . 9 a ) ,  plus we have the constraint (3.9 b) .  This free-surface Newtonian model now 
has three unknowns, (5, v, $), with one arbitrary function p , ( t ) ,  which must satisfy 
four independent equations. The system is overdetermined. The limited class of 
solutions excludes much axisymmetric jet behaviour of physical interest (see Bechtel 
& Forest 1988). 

We close this example by remarking that the overdeterminism in this free-surface 
model arises because the free-surface boundary conditions (3 .4)  directly involve 
the stress and pressure modal variables, as defined by power series expansions in x 
and y .  

3.2.  Free surface upper convected Maxwell-Jeffreys flows 

Without burdening the exposition with too many details, once again the kinetic 
boundary conditions yield an overdetermined system of modal equations. This is 
because the power series definition of stress and pressure modal variables, (2 .6) ,  
forces the stress and pressure modal variables into the boundary conditions. 
Therefore, this exact closure model collapses when a free surface is adjoined. 

4. Integrated momentum equations and free-surface boundary conditions : 
selection of stress modal variables 

The upshot of $ 3  is the illustration of how the use of power series expansions for 
stress and pressure in x and y ,  in which the modal variables (or unknowns) are defined 
as the coefficients, can be a double-edged sword. More detailed information on the 
velocity field and stress is obtained in the jet cross-section by keeping higher powers 
in the expansion, but, with a free surface and the attendant boundary conditions, 
new constraints are introduced that severely restrict the exact one-dimensional jet 
models. 

To derive one-dimensional jet models from the three-dimensional theory with the 
necessary flexibility to describe interesting behaviour, such as non-axisymmetric free 
jets and jets with swell, we retain the power series assumption (2 .1)  on u,  but choose 
stress and pressure unknowns to be integrals over the jet cross-section. This 
approach is taken by, among others, Matovich & Pearson (1969) and Denn et al. 
(1975) in the application to viscoelastic free jets, and by Green et al. ( 1 9 7 4 ~ )  in the 
application to elastic rods. 

This leads us to two important points. First, our power series ansatz for v limits 
the ability of this theory to meet velocity boundary conditions, such as no slip. Since 
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boundary values of velocity are explicit combinations of the velocity modal variables 
(i.e. the coefficients in the power series expansion) and free-surface modal variables 
r$l and &, the imposition of a condition on velocity at the boundary would constrain 
the velocity within the cross-section. However, our second point is that, historically, 
the reason for the use of area-averaged stress and pressure variables (rather than 
pointwise, power series expansions) is precisely to not limit the ability to meet the 
stress boundary conditions for free jets. As we have demonstrated in $3, with the 
power series expressions for stress and pressure there is not enough flexibility to meet 
the stress boundary conditions, for the same reason the v ansatz fails to meet flow 
boundary conditions. The boundary values of stress and pressure are explicit 
combinations of the stress and pressure modal variables (i.e. the coefficients in the 
power series expansions) and free-surface modal variables r$l and cj2. Therefore the 
boundary conditions (3.2) and (3.4) are coupled to the model equations as severe 
constraints on the class of solutions of the modal equations, and hence limit the 
ability to model interesting free-jet phenomena (this point is expanded on in Bechtel 
& Forest 1988). 

Thus, the bargain is made to give up detailed pointwise stress information in 
exchange for averaged and moment-averaged stress information and the flexibility 
to respect the interfacial boundary conditions. Area-averaged stress and pressure are 
chosen as the stress and pressure modal variables, and the equations relating them 
to the velocity and free-surface modal variables are obtained from the three- 
dimensional momentum conservation equations (2.2 a+) by integration over the jet 
cross-section. In  the following we adopt this approach, and carefully indicate how 
free-surface boundary conditions are incorporated into the model, but still remain as 
a connection to the full three-dimensional boundary value problem (this last aspect 
of one-dimensional closure models is often neglected). 

The first step is to compute certain cross-sectional area integrations and moment 
integrations of the conservation of momentum equations (2.2), which have been 
evaluated on the velocity ansatz (2.1). We make no apriori stress and pressure model 
ansatz. Recalling the discussion of the elliptical free surface (3.1), and the boundary 
conditions (3.2), (3.4), we hereafter restrict to no swirl, @ = 0. 

We compute the following integrations over the area A bounded by the ellipse, a t  
fixed z ,  given by (3.1) : 

/ IA  b. (2.2 a)) dA 3 /, {Y . (2.2 b ) )  dA 1 /JA (2.2 c) dA, (4.1) 

In a calculation which one must experience to appreciate, one uses the divergence 
theorem, integration by parts, and Leibniz’ rule for differentiation of integrals, and 
all boundary terms from (4.1) involving p and fi either cancel, or what remains is 
precisely the linear combination that appears in the interfacial kinetic boundary 
conditions (3.4). Thus, one ‘incorporates ’ the boundary conditions (3.4) into the 
integrated momentum equations ; in other words, one replaces the boundary values 
of stress and pressure by the mean curvature, surface tension, and ambient pressure 
variables. The calculations are tedious, but straightforward, and are omitted. The 
result of these calculations is : 

f 2 n  
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J o  

’ 3 3 , Z  = p,Z - ‘Pg$l$Z + ‘ d l  $ Z ( ’ ,  t + 2) 

( 4 . 2 ~ )  

where K is the mean curvature given by (3 .4e) .  We append the incompressibility 
condition ( 2 . 2 4 ,  and the kinematic boundary conditions (3 .2a) ,  

r 2n 

- cr($l $,, K sin2 0 dB + $2 $,, K cos2 0 do), 
0 

~ , z + c 1 + Y 2  = 0, 

$ a , t + 4 Y , z  = $ucu (a = L 2 ) -  (4 .3)  

The notation introduced above is for the following integrated stress and pressure 
variables : 

A ,  = JIAejdA, A,, = /JA@,dA, Aijz  = JIA&,dA, 

We emphasize the above integrated equations (4 .2)  are exact, as are the equations 
(4 .3) .  At this junction, the integrated stress and pressure variables, All ,  A,,, A,,, 
A,,,, A,,, and p are prime candidates for modal variables in our desired closure 
model. These are clearly natural choices from the conservation of momentum 
equations ; it  is precisely these averages and moment averages that allow the 
incorporation of the interfacial boundary conditions (3 .4) .  

In the next two sections we produce the desired closure model, employing these 
integrated stress and pressure variables. First, in $5 we integrate the constitutive law 
(1 .2)  over the jet cross-section to obtain dynamical equations for A,, ,  A,,, A,,, 
Al, , ,  A,,,, and then in $6 we derive a self-consistent, closed set of modal equations for 
these stress variables and the velocity, pressure and free-surface modal variables 

Before we proceed, we return to the fate of the kinetic boundary conditions (3 .4) .  
At this point, it  has been customary in the history of one-dimensional jet models to 
forget these boundary conditions, since, after all, they have been ‘incorporated ’ into 
the integrated momentum equations (4 .2) .  However, the equations (4 .2)  do not imply 
(3 .4) .  Therefore, consistency with the full three-dimensional boundary-value problem 
of any one-dimensional model derived in this way demands that these boundary 
conditions can be met by the solutions of the one-dimensional modal equations. 

It is at  this point that the choice of stress and pressure modal variables, integrated 
ws. power series expansion in x and y, makes a dramatic difference. Recall that with 
the power series definition of stress and pressure modal variables, the stress 
boundary conditions (3 .4)  severely restrict the closure models. With the integrated 
choice this is not the case. 

In effect, the integration technique to arrive a t  (4 .2)  has decoupled the boundary 
value unknowns p i a ,  !&la from the principal modal variables w, el, c2, $12 $,, gi, 
A,,, A,,, A,,, A,,,, A,,,. Information on the boundary-value unknowns p 1 a, Ti, I a can 

V, el> c27 P? $ 1 3  $ 2 .  

9 FLM 1% 
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be obtained a posteriori from the free-surface stress boundary conditions (3.4) and the 
solution of the modal equations. Since for the Maxwell-Jeffreys model the boundary- 
value unknowns are independent of the principal modal variables, the stress 
boundary conditions (3.4) do not constitute constraints on the modal variables, as 
they did in the previous approach involving power series expansions for stress and 
pressure. This is the crucial advantage of using the integrated stress and pressure 
modal variables, as opposed to the coeficients in power series expansions. 

This advantage is lost in the inviscid and Newtonian cases. For these degenerate 
cases the velocity ansatz (2 .1)  demands that stress and pressure are also truncated 
power series in x and y (see § 2 ) ,  and it can be shown that the closure models obtained 
by fhe two approaches, i.e. balancing polynomials in x and y or integrating over the 
jet cross-section, are equivalent and equally over-determined. In the inviscid and 
Newtonian special cases, the boundary-value unknowns are not independent of the 
principal model variables, so that the stress boundary conditions (3.4) are 
unavoidably constraints on the modal variables. See Bechtel & Forest (1988). 

5. Integrated constitutive laws 
Given these remarks, we now compute the area and area moment integrations of 

the stress equations (1.2) as dictated by the integrated momentum equations. Once 
again, in a calculation involving only integration by parts and Leibniz' rule, all of the 
boundary terms cancel in each of these integrated equations. Thus, we have the good 
fortune of boundary values of stress not entering into the stress resultant equations. 
The fact reflects the compatibility of the Maxwell-Jeffreys law with the elliptical von 
Karman ansatz and the elliptical free surface. To get the A,, equation, we compute 
the area integral of the ( 1 , l )  component of the matrix equations (1.2), JJ,( 1.2),, dA. 
Likewise, to get the equations for A,,, A,,, A,,,, A,,, we compute fJA(1.2),,dA, 
JJA(1.2),,dA, J J A y ( 1 . 2 ) 2 3 d A ,  ~ J , ~ ( 1 . 2 ) , ~ d A ,  respectively. The exact results are: 

t + v A i i , ~ -  ( (2a+ l )  51 (a+ 5i,zAi311 

= ~ ~ ~ $ 4 1 9 2 ~ 5 1 + ~ z ~ Y l , t + ~ ~ l , z - ~ ~ ~ - ~ ~ ~ +  1 )  9:L?,z11, (5 . la)  

= 2n~$41$42[52+h2{5Z,t+~YZ,Z-2a~-~(a+ 1) $4;G,zH> ( 5 . l b )  

+ t + vAzz, z - ((2a -k ) 6, + 51) - (a+ ) 5 2 ,  z A 2321 

A33+hl[A33,t+ZIA33,z-(51+62+2av,z)A33+ -a) ( 6 1 , z A 1 3 1 + 6 2 . z A 2 3 2 ) 1  

= 2v$41 M v ,  z + h2b,  zt + TJTJ ,zz  -2av:z +Q(1 -a) (G; G, z + $4; G",,)>I> (5.1 c )  

A 131 + 131, t + 131,Z - ('Cl+ 6 2  + ', 2)) A 131 

+$(l -a) ( 5 i , z A i i i i + 5 ~ , z A i z i z ) - g ( 1  +a) &,zA33111 

= h"V $z[Ci, z+hz{Ci, z t  +vCi, zz + 51, z(2(1 -a) Ci- (2a+ 1 )  u, 2))], (5.1 d )  

+ 'lLA232, t + 2- (51 + '52 + a ( c Z  + 2)) 

+$(I -a) (~l,zAlzlz + ~ z , z A z z z z ) - i ( i  +a) ~ z , z A 3 3 z z 1  

= &?4 9 ~ [ 5 2 , z + ~ 2 { 6 2 , z t  + 4 2 , z z  + 5,,z(2(1 -a) 5 2 -  Pa+ 1) v, , )>l .  (5.1 e )  

These exact equations for A,,, A,,, A,,, A,,,, A,,, couple additional stress 
resultants, A,,,,, A,,,,, A,,,,, AZ2,,, A,,,,. We are thus led to the classic closure 
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difficulty, where next we seek equations for these second moment area averages, 
which couples new stress resultants, and so on. As expected, there is no exact 
closure. 

(We note that the closure difficulty exists only if A, =k 0 in the Maxwell-Jeffreys 
constitutive model. If A ,  = 0, i.e. for the special cases of an inviscid fluid (7 = A, = 
A, = 0 ) ,  Newtonian fluid ( A ,  = A, = 0) and second-order fluid ( A ,  = 0 ) ,  the one- 
dimensional model (5 .1 )  is closed; however, as discussed in the previous section, the 
model is overconstrained in these degenerate cases by the kinetic free-surface 
boundary condition (3 .4 ) ,  so that only very limited classes of solutions exist. We 
comment in passing that the same asymptotic analysis which will be found in the 
following sections to produce closure in the general case of A, =l 0 also relieves the 
overdeterminism of the degenerate cases with A, = 0. A complete treatment can be 
found in Bechtel & Forest (1988).) 

6. Asymptotic closure : slenderness scaling on the integrated momentum 
and constitutive equations 

The next step is to restrict the exact equations (4 .2 ) ,  (5.1) to a 'slenderness' 
regime, by introducing a scaling analysis which is consistent with the elliptical von 
Karman velocity ansatz (2 .1 ) ,  with $ = 0. This scaling is modelled after that of 
Schultz & Davis (1982) in their study of axisymmetric Newtonian jets. First we non- 
dimensionalize the coordinates (x, y, z,  t )  and the modal velocity variables (II,, c2, v). 
Let ro = a typical lengthscale in the jet cross-section, La = a typical lengthscale in 
the axial direction, and to = a typical timescale. The scaling hypothesis is: 

x = Zr,, y = dr,, z = %,, t = [to, ( 6 . 1 ~ )  

and the small parameter e is the ratio of lengthscales, 

r 
€ : = 0 & 1 .  

La 
(6 . lb)  

Thus, the approximation is that a typical radial scale is much shorter than a typical 
axial scale, and therefore is called the slenderness scaling. 

The free surface and velocity modal variables are non-dimensionalized as 

(6.1 c )  

where va is a characteristic axial velocity. To preserve the incompressibility condition 
( 4 . 3 ~ )  and kinematic boundary conditions (4.3 b )  upon scaling, the characteristic 
velocity, length, and time scales must be related as 

(6.1 d )  

Then v(x) = evaz f l+~(e3 ) ,  d y )  = E2r,gf2+0(63), d~) = v a v " + ~ ( e 2 ) ,  (6.1 e )  

so that the slenderness approximation in combination with the von Karm An velocity 
profile is equivalent to a slowly varying axial versus radial velocity ansatz. 

[Remark. The scaled velocity formula (6.1 e )  includes higher-order corrections, 
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0(c2) ,  to the von K i r m i n  ansatz (2.1). These correspond to higher-order polynomial 
terms, O(x2 ,  y2, xy), in a general power series expansion for v, 

v = (al x+a, y + a3x2 +a4 xy +a5 y2 +a, x3 + a7 z2y+ag xy2 +a, y3) e, 

+ (b ,  z+ b, y+b3 z2 + b, xy + b, y2 + b, x3 + b, x2y+ b, xy2 + b, y3) e, 

+ (co + c1 x+ c2 y+c3 x2 +c4 xy + c5 y2 + c ,  x3 + c7 x2y + c8 xy2 + c,  y3) e3 

+ 0 ( ~ 4 ,  x3y, . . . ), (2.1)' 

where a,, bi, ci are functions of z and t .  Symmetry considerations cause many of these 
coefficients to vanish. 

Consistency demands that we return to the previous integrated momentum 
equations (4.2), incompressibility constraint and kinematic boundary conditions 
(4.3), and integrated constitutive law (5.1), and add corrections which result from the 
integration with the higher-order velocity expansion (2.1)'. These additional terms 
do not enter the lowest-order closure models of this paper, but yield higher-order 
corrections in the asymptotics. The precise form of these terms, along with the 
resolved question of consistency to higher order in the perturbation expansion, 
appear in Bechtel, Forest & Lin (1988).] 

Next we scale the three-dimensional pressure and stress components as 

- f  
P ( X >  y, z, t )  = B(& g, z", t)?,  

r0 

!&x,y,z, t)  = Zi(2,g,z",L)- - f  ( i , j  = 1,2,3) ,  
6 

where f is a characteristic force scale. It then follows that the stress resultants scale 
as 

A ,  = JJAqjdxdy = -pT,rfdZdg =j&, 
J I A ;  - 

where, for example, 

(6.1h) 

(6 . l i )  

It is important to note that the non-dimensionalized quantities 5, aii, A"ii,, a,,, are 

Next we non-dimensionalize all of the equations (4.2), (5.1), keeping all terms for 
now, and collecting terms in powers of the slenderness ratio 8. By the usual abuse of 
notation, we drop all tildes on the non-dimensionalized coordinates and variables. 

O(1). 
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The resulting non-dimensionalized equations are 

vJ+5 l+52  = 0, (6.2d) 
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f t 2  f - viscoelastic and constraint pressure effects 
zpri La zpri vi inertial effects 3 

1 g t i  - gravity effects 

F - L, 
- _ -  

inertial effects ’ 

0- surface tension (capillary) effects 
f (6.4) - - - -- 1 0-ti - 

w ProL i  p r o 4  inertial effects 

The non-dimensional parameters F ,  W ,  (BZ)-’ and A ,  are recognized as the 
Froude, Weber, Reynolds and Weissenberg numbers respectively. 2, A , ,  A ,  are the 
non-dimensional zero strain rate viscosity, relaxation time and retardation time, 
respectively, of the fluid. 

We emphasize these equations depict the balance among all the physical effects 
that  are incorporated. (The higher-order velocity expansion (2.1)’ does not alter (6.2) 
to this order in e.) In  the slenderness approximation, 0 < E -+ 1, these equations yield 
the ability to perform theoretical experiments in which the relative physical effect’s 
are adjusted through the non-dimensional parameters. To this end, { B ,  l / W ,  1/F, Al,  
A,,  Z } ,  which measure the various properties of the free jet, are scaled in powers of 
the slenderness ratio e, 

1 1  1 1  

W Wo F Fo 
B = B o e b ,  -- - -eW, -=--ef, A j = A j 0 $ ’ ,  Z = Z , E ~ ,  (6 .5)  

where Ro, . . . , Z, are O( I ) .  
In  a specific physical application, the exponents in (6.5) are dictated by the 

particular length- and timescales and material properties. However, from a 
theoretical perspective, this six-parameter family allows us the freedom to explore 
the consequences of a wide range of relative flow, geometrical and rheological 
properties. 

We define the choice of integer exponents in (6.5) as the regime of free jet 
behaviour, as this choice reflects the relative magnitudes of competing physical 
effects. 

To complete the asymptotics, we must also expand the non-dimensionalized 
dependent variables, v,  gl, c2, $,, $2, p ,  A,,, Aijm, 
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In this paper we explicitly present only the lowest-order jet models in the 
slenderness limit (in another paper, Bechtel et al. (1988b), we exhibit the first-order 
corrections to the lowest-order equations, for the purpose of determining their effects 
on the lowest-order solutions). We therefore list the asymptotic equations retaining 
only the lowest power of E within each physical term. Thus, specifying the physical 
properties will alter the relative order of the lowest terms we keep, but these will 
be the leading-order contributions from each physical property no matter which 
physical properties dominate. (All dependent variables in (6.7) are the leading-order 
contributions ; we omit the superscript (0).) 

where 

This  analysis reveals the asymptotic balance of the competing physical effects on 
viscoelastic slender free-jet behawiour. We are finally in a position to  exhibit one- 
dimensional closure models. We specify a particular jet regime through a choice of 
integer exponents in (6.5) and obtain the lowest-order equations. There is clearly a 
tremendous amount of latitude in exploring all the specialized closure models which 
derive from our general construction. 

As will be shown in the next section, existing one-dimensional theories correspond 
to  the axisymmetric, steady forms of the lowest-order equations with certain 
physical effects suppressed to  higher order. Before connecting with the existing 
models, however, we first illustrate with three more general (non-axisymmetric and 
time dependent) regimes. 
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As one example of a one-dimensional closure model for a particular jet regime, 
consider the case where all of the parameters in the set {B, l / W ,  l/F, A,, A 2 , Z }  are 
O(eo) ,  i.e. all exponents in (6.5) are zero. The lowest-order equations in the asymptotic 
expansion are then 

(6.8a, b )  
1 1 

m 4 1 - F )  = 7 7 $ 1 $ 2 X L 0 ) >  B ( 4 2 - F )  = jj7$l$2X:o)'  

1 1 
B ( A 3 3 , 2 - p , 2 )  = -$$I $ 2 + w  ( # 1 , Z $ 2 X i o ) + # 2 , Z $ 1  X?')+$l $ 2 ( v , t  + " , Z ) >  (6'8c) 

W , Z + L + C - Z  = o ,  QI1, t+v$, , .  = $1519 $ 2 , t + v $ z , z  = $ 2 5 2 ¶  (6.8d-f) 

(6.8 9 )  

(6.8h) 

A 1 1  + 4 A 1 1 ,  t +2.'All,Z - (Pa+ 1) 51-1- C2) A 1 1 1  = 2 - w  ~ 2 [ 5 1 + ~ 2 ( 5 1 ,  t + v 5 1 . 2 - 2 4 3 1 9  

4 2  + 4 [ 4 2 , t + v A 2 2 , 2 -  (Pa+ 1) 5 2  + 5 1 )  A 2 2 1  = 2 2 4 1  $ 2 [ 5 2 + 4 ( 5 2 , t  +~52,z--2aG)I, 

A 3 3  + A l [ A 3 3 ,  t + v A 3 3 , 2 -  ( 5 1  + 5 2  +2av, z )  A 3 3 1  = 2 Z $ 1 $ 2 b ,  2 + A2(v, zt +vv,  zz - 2av:z)l. 
(6.8i) 

In  this regime, inertial effects, surface tension and gravity are all leading order in the 
axial direction (see equation ( 6 . 8 ~ ) ) .  Note that this demands inertial effects to be 
higher order in the transverse directions (see equations (6.8a, b ) ) .  Viscosity, relaxation 
and retardation effects are all leading order in the constitutive model in this 
regime. 

I n  this special regime, the lowest-order equations are a closed set of nine equations 
for the nine modal variables, $io), $i0), do), lJ0), flio), p-(O), A;:), Aii), Ai!). The shear 
stress resultants Ag\, AgL decouple to lowest order from equations ( 6 4 ,  and appear 
in the problem for the first-order corrections $?), $?), v ( l ) ,  etc. (see Bechtel et ul. 
1988b). The physical predictions of the closure model (6.8) for a variety of parameter 
values and steady nozzle conditions are explored in Bechtel et al. (1987, 1 9 8 8 ~ )  and 
Bechtel, Forest & Hyman (1988). 

As an example of a one-dimensional closure model for a different jet regime, 
consider the case where A, is O(so), and B, 1/W, 1/P, A2,  2 are O(e2). For this regime 
the lowest-order equations in the asymptotic expansion are 

(6.96) 
1 
W 

0 = 9 1 $ 2 ( v , t + v v , z ) ,  ( 6 . 9 ~ )  

v , 2 + 5 1 + c 2  = 0, (6.9d) 

B(AZ2 -p) = -$1 $2 xLo) -' a42 $1(52, t + ~ 5 2 , z  + 

$1,t+2.'$1,2 = A C - 1 7  $ 2 , t + v $ 2 , 2  = $ 2 5 2 ,  (6.9e, f 1 
(6.99) All + A , [ A , , . t  + 4 1 , 2 -  (@a+ 1) 5 1 + ~ 2 ) ~ 1 1 1  = 0, 

4 2  + ~ , [ 4 2 , t  +vJ42,,2- (@a+ 1 )  5 2 + 6 , ) A 2 2 1  = 0. (6.9h) 

In this regime inertial effects are important for motion within the jet cross-section 
(see 6.9a, b) ,  and gravity is neglected to leading order. These choices demand that 
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momentum is conserved in the axial direction (equation ( 6 . 9 ~ ) ) .  Only relaxation 
effects are included to leading order in the constitutive model, equations (6.9g, h) .  

In  this regime, the lowest-order equations are a closed set of eight equations for the 
eight modal variables q5io), $Lo), do), Cia), Cp), p(O), A$,  A:;). The axial stress resultant 
Ag), and shear stress resultants A!:\, ALtL decouple from this lowest-order problem. 

The behaviour predicted by the closed equations (6.9) differs significantly from the 
behaviour predicted by equations (6.8), a reflection of the disparate parameter 
specifications. Again, we defer discussion of the predictions of this specific closure 
model to  Bechtel et al. ( 1 9 8 8 ~ ) .  

As a third example, consider the particular jet regime where B, 1/W,  l/F are 
O(e3) .  Then, from (6.7), we obtain the lowest order equations: 

(6.10) 

In  this regime, only inertial effects are leading order. Here the lowest-order 
equations are a set of six equations for thefive unknowns $io), $Lo), do), Cl ( O )  c z  ( O ) ,  which 
are easily shown to be overconstrained, and in fact incompatible. With this regime 
we have demonstrated another important result of this analysis: the ability to  
determine what properties of slender viscoelastic free jets combine to produce 
consistent one-dimensional closure, and which do not. 

Many other specialized closure models are clearly available. We refer to Bechtel 
et al. (1987, 1988a) and Bechtel, Forest & Hyman (1988) for applications which have 
already derived from this work. Additional applications are planned. 

7. Contact with existing one-dimensional theories 
To illustrate the comprehensive nature of the above analysis, we now indicate how 

several widely referenced one-dimensional models for Newtonian and viscoelastic 
free jets are obtained by specification of particular jet regimes, and by reduction to 
the steady, axisymmetric forms. We list the order of magnitude of the parameters B, 
W ,  F ,  2, A,, A, in the slenderness ratio which produce exemplary existing models 
from our system (6.7) as the lowest-order equations. 

The axisymmetric, steady form of the lowest-order equations with the parameters 
B, W ,  F ,  Z all 0 ( e o )  and the parameters A,, A, both O(E)  is the Newtonian thin 
filament model, equation (34) from Matovich & Pearson (1969). In  this regime, 
Newtonian viscosity, surface tension and gravity are leading order, with the elastic 
and second-order viscosity effects suppressed to higher order. (Recall the Reynolds 
number R = (BZ)-l.) 

The axisymmetric, steady form of the lowest order equations with the parameters 
B, W ,  F ,  2, A2 all specified as O(EO), A, specified as O ( E ) ,  and the rate parameter a 
taken as - 1 (lower convected rate) is the second order, non-Newtonian thin filament 
model, equation (53) in Matovich & Pearson (1969). 

The one-dimensional viscoelastic model in Tanner (1985) (equations (7.31)-(7.33)) 
is obtained as the axisymmetric, steady form of the lowest-order equations from (6.7) 
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with the parameters B, 2, A ,  specified as 0(1/~), the parameters W ,  F ,  A ,  as O(so), the 
rate parameter a taken as 1 (upper convected rate), and the choice of notation 

A, ,  = P@, A,, = T@. 

Recalling the definitions 

@ 2 i , , d A ,  A,, = /j p 3 3  dA > j! cross-section cross-section 
p1:,dA, A,, = All = /j 

cross-section 

we see that Tfz )  is the average normal stress over the jet cross-section in the axial 
direction e,, and Pfx) is the average normal stress in the transverse directions. In this 
regime the leading-order effects are viscosity and elasticity, with inertia in the axial 
direction, surface tension, gravity and retardation time effects suppressed. The 
axisymmetric, steady form of this regime with upper convected rates is also the 
model of Denn et al. (1975) (equations (12)-( 14)), with the ratio v of stress differences 
in their constitutive model taken as zero, and the model of Denn & Marrucci (1977), 
with a spectrum of one relaxation time. The axisymmetric, time-dependent form of 
this regime is the viscoelastic model, equations (10)-(13), in Fisher & Denn (1976) 
with the power law viscosity parameter n in their model set equal to 1 .  

The one-dimensional model in Gupta et aE. (1986) for a free jet of an Oldroyd fluid 
B is obtained as the axisymmetric, steady form of the lowest-order equations from 
(6.7) with the parameters B, 2, A, ,  A ,  all O( l /e) ,  the parameters W ,  F both O( l ) ,  and 
the rate parameter a taken as 1 (upper convected rates). 

The axisymmetric form of the leading-order equations from our system (6.7) with 
the parameters B, 2, A ,  taken as O ( l ) ,  the parameters l / W ,  1/F, A ,  taken as O(e) ,  
and the rate parameter a chosen to be 1 (upper convected rate) is equivalent to the 
axisymmetric, time-dependent model, equations (2-l), of Beris & Liu (1988). In this 
regime the leading-order effects are viscosity, elasticity and inertia in the axial 
direction, with surface tension, gravity and retardation time effects suppressed. 

8. Concluding remarks 
We have satisfied the goals set in the 5 1.  Beginning with the full three-dimensional 

viscoelastic free surface boundary-value problem, we have derived, by slenderness 
asymptotics, a comprehensive framework of one-dimensional closure models for 
slender, free viscoelastic jets. The physical effects of inertia, gravity, viscosity, 
elasticity, surface tension, curvature, and the free-surface boundary conditions 
involving surface tension, ambient pressure and the curvature of the free surface, are 
represented in the one-dimensional modal equations, and most importantly, these 
effects appear as they derive from the full three-dimensional free-surface boundary- 
value problem. These resultant one-dimensional equations have the flexibility to 
vary the relative strengths of the physical properties of the fluid and interface. 
Existing one-dimensional theories correspond to special cases within our general 
framework. 

In  future papers, we will examine the full steady and dynamical consequences of 
specific one-dimensional closure models. For example, how do these one-dimensional 
systems reflect three-dimensional jet instability mechanisms ? Another follow-up to 
this work is the analysis of the next-order corrections to the lowest-order closure 
models in Bechtel et al. (1988b). These higher-order equations allow us to test the 
predictions of the lowest-order models, to determine if neglected effects become 
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important, and to obtain more detailed information about the three-dimensional 
flow. 

It remains an open and challenging problem as to whether this type of analysis can 
be brought to bear on development of reduced closure models in three-dimensional 
flows other than slender jets. 
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